Đáp án:
Giải thích các bước giải:
$2x(3x-5)+6x-10=0$
(Ở đây có nhân tử chung là $2$ nên ta đặt được ra ngoài . Ở trong còn $(3x-5)$)
$⇔2x(3x-5)+2(3x-5)=0$
$⇔(2x+2)(3x-5)=0$
⇔\(\left[ \begin{array}{l}2x+2=0\\3x-5=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}2x=-2\\3x=5\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=-1\\x=\dfrac{5}{3}\end{array} \right.\)
Vậy tập nghiệm của phương trình đã cho là : $S=\left \{-1 ; \dfrac{5}{3} \right \}$