Đáp án:
$a)min_A=3 \Leftrightarrow x=0\\ b)max_B=8 \Leftrightarrow x=7.$
Giải thích các bước giải:
$a)A=|2x-1|+3\\ \text{Do }|2x-1| \ge 0 \ \forall \ x\\ \Rightarrow |2x-1|+3 \ge 3 \ \forall \ x\\ \Leftrightarrow A \ge 3 \ \forall \ x$
Dấu "=" xảy ra $\Leftrightarrow 2x-1=0\Leftrightarrow x=\dfrac{1}{2}$
Vậy $min_A=3 \Leftrightarrow x=0$
$b)B=8-|x-7|\\ |x-7| \ge 0 \ \forall \ x\\ \Rightarrow -|x-7| \le 0 \ \forall \ x\\ \Rightarrow 8-|x-7| \le 8 \ \forall \ x\\ \Leftrightarrow B \le 8 \ \forall \ x$
Dấu "=" xảy ra $\Leftrightarrow x-7=0\Leftrightarrow x=7$
Vậy $max_B=8 \Leftrightarrow x=7.$