Đáp án:
$\begin{array}{l}
a)DKxd:x \ge 0;x\# 1\\
A = \left( {\dfrac{{2x + 1}}{{x\sqrt x - 1}} - \dfrac{1}{{\sqrt x - 1}}} \right):\left( {1 - \dfrac{{x - 2}}{{x + \sqrt x + 1}}} \right)\\
= \dfrac{{2x + 1 - \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}:\dfrac{{x + \sqrt x + 1 - x + 2}}{{x + \sqrt x + 1}}\\
= \dfrac{{2x + 1 - x - \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{{x + \sqrt x + 1}}{{\sqrt x + 3}}\\
= \dfrac{{x - \sqrt x }}{{\sqrt x - 1}}.\dfrac{1}{{\sqrt x + 3}}\\
= \dfrac{{\sqrt x }}{{\sqrt x + 3}}\\
b)x = \dfrac{2}{{2 + \sqrt 3 }}\left( {tmdk} \right)\\
= \dfrac{{2\left( {2 - \sqrt 3 } \right)}}{{\left( {2 + \sqrt 3 } \right)\left( {2 - \sqrt 3 } \right)}}\\
= \dfrac{{4 - 2\sqrt 3 }}{{4 - 3}}\\
= 4 - 2\sqrt 3 = {\left( {\sqrt 3 - 1} \right)^2}\\
\Leftrightarrow \sqrt x = \sqrt 3 - 1\\
\Leftrightarrow A = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1 + 3}} = \dfrac{{\sqrt 3 - 1}}{{2 + \sqrt 3 }}\\
= \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {2 - \sqrt 3 } \right)}}{{\left( {2 + \sqrt 3 } \right)\left( {2 - \sqrt 3 } \right)}}\\
= \dfrac{{2\sqrt 3 - 3 - 2 + \sqrt 3 }}{{4 - 3}}\\
= 3\sqrt 3 - 5\\
c)A = \dfrac{{\sqrt x }}{{\sqrt x + 3}} = \dfrac{{\sqrt x + 3 - 3}}{{\sqrt x + 3}}\\
= 1 - \dfrac{3}{{\sqrt x + 3}}\\
A \in Z\\
\Leftrightarrow \dfrac{3}{{\sqrt x + 3}} \in Z\\
\Leftrightarrow \sqrt x + 3 = 3\left( {do:\sqrt x + 3 \ge 3} \right)\\
\Leftrightarrow \sqrt x = 0\\
\Leftrightarrow x = 0\left( {tmdk} \right)\\
Vậy\,x = 0\\
d)A = 1 - \dfrac{3}{{\sqrt x + 3}}\\
\sqrt x + 3 \ge 3\\
\Leftrightarrow \dfrac{1}{{\sqrt x + 3}} \le \dfrac{1}{3}\\
\Leftrightarrow \dfrac{3}{{\sqrt x + 3}} \le 1\\
\Leftrightarrow - \dfrac{3}{{\sqrt x + 3}} \ge - 1\\
\Leftrightarrow 1 - \dfrac{3}{{\sqrt x + 3}} \ge 0\\
\Leftrightarrow A \ge 0\\
\Leftrightarrow GTNN:A = 0\,khi:x = 0\\
e)A = \dfrac{1}{3}\\
\Leftrightarrow \dfrac{{\sqrt x }}{{\sqrt x + 3}} = \dfrac{1}{3}\\
\Leftrightarrow 3\sqrt x = \sqrt x + 3\\
\Leftrightarrow 2\sqrt x = 3\\
\Leftrightarrow \sqrt x = \dfrac{3}{2}\\
\Leftrightarrow x = \dfrac{9}{4}\left( {tmdk} \right)\\
Vậy\,x = \dfrac{9}{4}\\
g)A - 1\\
= 1 - \dfrac{3}{{\sqrt x + 3}} - 1\\
= - \dfrac{3}{{\sqrt x + 3}} < 0\\
\Leftrightarrow A < 1\\
h)A > \dfrac{1}{2}\\
\Leftrightarrow \dfrac{{\sqrt x }}{{\sqrt x + 3}} > \dfrac{1}{2}\\
\Leftrightarrow \dfrac{{2\sqrt x - \sqrt x - 3}}{{2\left( {\sqrt x + 3} \right)}} > 0\\
\Leftrightarrow \dfrac{{\sqrt x - 3}}{{2\left( {\sqrt x + 3} \right)}} > 0\\
\Leftrightarrow \sqrt x - 3 > 0\\
\Leftrightarrow \sqrt x > 3\\
\Leftrightarrow x > 9\\
Vậy\,x > 9\\
k)A.m = 1\\
\Leftrightarrow \dfrac{{\sqrt x }}{{\sqrt x + 3}}.m = 1\\
\Leftrightarrow m.\sqrt x = \sqrt x + 3\\
\Leftrightarrow \left( {m - 1} \right).\sqrt x = 3\\
\Leftrightarrow \left\{ \begin{array}{l}
m\# 1\\
\sqrt x = \dfrac{3}{{m - 1}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\dfrac{3}{{m - 1}} \ge 0\\
\dfrac{3}{{m - 1}}\# 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m > 1\\
m - 1\# 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m > 1\\
m\# 4
\end{array} \right.\\
Vậy\,m > 1;m\# 4
\end{array}$