Đáp án:
$\begin{array}{l}
b)\sqrt {48} + \sqrt {5\dfrac{1}{3}} + 2\sqrt {75} - 5\sqrt {1\dfrac{1}{3}} \\
= 4\sqrt 3 + \sqrt {\dfrac{{16}}{3}} + 2.5\sqrt 3 - 5.\sqrt {\dfrac{4}{3}} \\
= 4\sqrt 3 + \dfrac{{4\sqrt 3 }}{3} + 10\sqrt 3 - \dfrac{{5.2.\sqrt 3 }}{3}\\
= 14\sqrt 3 - \dfrac{{6\sqrt 3 }}{3}\\
= 14\sqrt 3 - 2\sqrt 3 \\
= 12\sqrt 3 \\
d)\left( {\sqrt {18} + \sqrt {0,5} - 3\sqrt {\dfrac{1}{3}} } \right) - \left( {\sqrt {\dfrac{1}{8}} - \sqrt {75} } \right)\\
= \left( {3\sqrt 2 + \sqrt {\dfrac{1}{2}} - \sqrt 3 } \right) - \dfrac{{\sqrt 2 }}{4} + 5\sqrt 3 \\
= 3\sqrt 2 + \dfrac{{\sqrt 2 }}{2} - \sqrt 3 - \dfrac{{\sqrt 2 }}{4} + 5\sqrt 3 \\
= 4\sqrt 3 + \dfrac{{13\sqrt 2 }}{4}\\
f)\left( {\sqrt 6 + 2} \right)\left( {\sqrt 3 - \sqrt 2 } \right)\\
= \sqrt 2 .\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)\\
= \sqrt 2 .\left( {3 - 2} \right)\\
= \sqrt 2 \\
g){\left( {\sqrt 3 + 1} \right)^2} - 2\sqrt 3 + 4\\
= 3 + 2\sqrt 3 + 1 - 2\sqrt 3 + 4\\
= 8\\
i)\sqrt 3 .{\left( {\sqrt 2 - \sqrt 3 } \right)^2} - \left( {\sqrt 3 + \sqrt 2 } \right)\\
= \sqrt 3 .\left( {2 - 2\sqrt 2 .\sqrt 3 + 3} \right) - \sqrt 3 - \sqrt 2 \\
= \sqrt 3 .\left( {5 - 2\sqrt 6 } \right) - \sqrt 3 - \sqrt 2 \\
= 5\sqrt 3 - 6\sqrt 2 - \sqrt 3 - \sqrt 2 \\
= 4\sqrt 3 - 7\sqrt 2 \\
k){\left( {1 - \sqrt 3 } \right)^2}.{\left( {1 + 2\sqrt 3 } \right)^2}\\
= \left( {1 - 2\sqrt 3 + 3} \right)\left( {1 + 4\sqrt 3 + 12} \right)\\
= \left( {4 - 2\sqrt 3 } \right)\left( {13 + 4\sqrt 3 } \right)\\
= 52 + 16\sqrt 3 - 26\sqrt 3 - 24\\
= 26 - 10\sqrt 3 \\
n)\left( {\dfrac{1}{{\sqrt 5 - \sqrt 2 }} - \dfrac{1}{{\sqrt 5 + \sqrt 2 }} + 1} \right).\dfrac{1}{{{{\left( {\sqrt 2 + 1} \right)}^2}}}\\
= \left( {\dfrac{{\sqrt 5 + \sqrt 2 - \sqrt 5 + \sqrt 2 }}{{5 - 2}} + 1} \right).\dfrac{{\sqrt 2 - 1}}{{2 - 1}}\\
= \left( {\dfrac{{2\sqrt 2 }}{3} + 1} \right).\left( {\sqrt 2 - 1} \right)\\
= \dfrac{{\left( {2\sqrt 2 + 3} \right)}}{3}.\left( {\sqrt 2 - 1} \right)\\
= \dfrac{{{{\left( {\sqrt 2 + 1} \right)}^2}}}{3}.\left( {\sqrt 2 - 1} \right)\\
= \dfrac{{\sqrt 2 + 1}}{3}.\left( {2 - 1} \right)\\
= \dfrac{{\sqrt 2 + 1}}{3}\\
p)\dfrac{{\sqrt 5 - 2}}{{5 + 2\sqrt 5 }} - \dfrac{1}{{2 + \sqrt 5 }} + \dfrac{1}{{\sqrt 5 }}\\
= \dfrac{{\sqrt 5 - 2 - \sqrt 5 + 2 + \sqrt 5 }}{{\sqrt 5 \left( {2 + \sqrt 5 } \right)}}\\
= \dfrac{{\sqrt 5 }}{{\sqrt 5 \left( {2 + \sqrt 5 } \right)}} = \dfrac{1}{{2 + \sqrt 5 }}\\
= \dfrac{{\sqrt 5 - 2}}{{5 - 4}} = \sqrt 5 - 2
\end{array}$
$\begin{array}{l}
r)\dfrac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} + \dfrac{{2 + \sqrt 2 }}{{\sqrt 2 + 1}} - \left( {\sqrt 3 + 2} \right)\\
= \sqrt 3 + 2 + \sqrt 2 - \sqrt 3 - 2\\
= \sqrt 2
\end{array}$