Đáp án:
\[x \in \left\{ {1;16;25;49} \right\}\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
A = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}\\
= \dfrac{{2\sqrt x - 9}}{{\left( {x - 3\sqrt x } \right) - \left( {2\sqrt x - 6} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\
= \dfrac{{2\sqrt x - 9}}{{\sqrt x \left( {\sqrt x - 3} \right) - 2\left( {\sqrt x - 3} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\
= \dfrac{{2\sqrt x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\
= \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{2\sqrt x - 9 - \left( {x - 9} \right) + \left( {2x - 3\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {x - 2\sqrt x } \right) + \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x \left( {\sqrt x - 2} \right) + \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} = \dfrac{{\left( {\sqrt x - 3} \right) + 4}}{{\sqrt x - 3}} = 1 + \dfrac{4}{{\sqrt x - 3}}\\
A \in Z \Leftrightarrow \dfrac{4}{{\sqrt x - 3}} \in Z \Rightarrow \sqrt x - 3 \in \left\{ { - 4; - 2; - 1;1;2;4} \right\}\\
\Rightarrow \sqrt x \in \left\{ { - 1;1;2;4;5;7} \right\}\\
\sqrt x \ge 0 \Rightarrow \sqrt x \in \left\{ {1;2;4;5;7} \right\} \Rightarrow x \in \left\{ {1;4;16;25;49} \right\}\\
x \ne 4;\,\,x \ne 9 \Rightarrow x \in \left\{ {1;16;25;49} \right\}
\end{array}\)
Vậy \(x \in \left\{ {1;16;25;49} \right\}\)