Đáp án:
$\begin{array}{l}
B2)\\
Dkxd:x > 0;x\# 4\\
a)A = \left( {\dfrac{1}{{\sqrt x + 2}} - \dfrac{1}{{\sqrt x - 2}}} \right):\dfrac{{\sqrt x }}{{x - 2\sqrt x }}\\
= \dfrac{{\sqrt x - 2 - \sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}.\dfrac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\sqrt x }}\\
= \dfrac{{ - 4}}{{\sqrt x + 2}}\\
b)x = 6 - 2\sqrt 5 \left( {tm} \right)\\
= {\left( {\sqrt 5 - 1} \right)^2}\\
\Leftrightarrow \sqrt x = \sqrt 5 - 1\\
\Leftrightarrow A = \dfrac{{ - 4}}{{\sqrt x + 2}} = \dfrac{{ - 4}}{{\sqrt 5 - 1 + 2}}\\
= \dfrac{{ - 4}}{{\sqrt 5 + 1}} = \dfrac{{ - 4\left( {\sqrt 5 - 1} \right)}}{{5 - 1}} = 1 - \sqrt 5 \\
c)A = \dfrac{{ - 2}}{3}\\
\Leftrightarrow \dfrac{{ - 4}}{{\sqrt x + 2}} = - \dfrac{2}{3}\\
\Leftrightarrow \sqrt x + 2 = 6\\
\Leftrightarrow \sqrt x = 4\\
\Leftrightarrow x = 16\left( {tm} \right)\\
Vậy\,x = 16\\
d)A < - 1\\
\Leftrightarrow \dfrac{{ - 4}}{{\sqrt x + 2}} < - 1\\
\Leftrightarrow \dfrac{{ - 4 + \sqrt x + 2}}{{\sqrt x + 2}} < 0\\
\Leftrightarrow \sqrt x - 2 < 0\\
\Leftrightarrow \sqrt x < 2\\
\Leftrightarrow x < 4\\
Vậy\,0 < x < 4\\
e)A = \dfrac{{ - 4}}{{\sqrt x + 2}}\\
Do:\sqrt x + 2 > 2\\
\Leftrightarrow \dfrac{1}{{\sqrt x + 2}} < \dfrac{1}{2}\\
\Leftrightarrow \dfrac{{ - 4}}{{\sqrt x + 2}} > - 2\\
\Leftrightarrow A > - 2\\
B3)\\
a)Dk:x \ge 1\\
\sqrt {x - 1} + \sqrt {9x - 9} + \sqrt {4x - 4} = 12\\
\Leftrightarrow \sqrt {x - 1} + 3\sqrt {x - 1} + 2\sqrt {x - 1} = 12\\
\Leftrightarrow 6\sqrt {x - 1} = 12\\
\Leftrightarrow \sqrt {x - 1} = 2\\
\Leftrightarrow x - 1 = 4\\
\Leftrightarrow x = 5\left( {tm} \right)\\
Vậy\,x = 5\\
b)Dk:x \ge 5\\
\sqrt {{x^2} - 5x} - \sqrt {x - 5} = 0\\
\Leftrightarrow \sqrt x .\sqrt {x - 5} - \sqrt {x - 5} = 0\\
\Leftrightarrow \sqrt {x - 5} \left( {\sqrt x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {x - 5} = 0\\
\sqrt x = 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 5\left( {tm} \right)\\
x = 1\left( {ktm} \right)
\end{array} \right.\\
Vậy\,x = 5
\end{array}$
$\begin{array}{l}
c)Dkxd:x \ge - \frac{3}{2}\\
{x^2} + 4x + 5 = 2\sqrt {2x + 3} \\
\Leftrightarrow {x^2} + 4x + 5 - 2\sqrt {2x + 3} = 0\\
\Leftrightarrow {x^2} + 2x + 1 + 2x + 4 - 2\sqrt {2x + 3} = 0\\
\Leftrightarrow \left( {{x^2} + 2x + 1} \right) + 2x + 3 - 2\sqrt {2x + 3} + 1 = 0\\
\Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {\sqrt {2x + 3} - 1} \right)^2} = 0\\
\Leftrightarrow \left\{ \begin{array}{l}
x + 1 = 0\\
\sqrt {2x + 3} = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = - 1\\
2x + 3 = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = - 1\\
x = - 1
\end{array} \right.\\
Vậy\,x = - 1
\end{array}$