Đáp án:
1) \(Min = - 26\)
2) \(Min = \dfrac{{67}}{4}\)
3) \(Min = - \dfrac{1}{8}\)
4) \(Max = - 2\)
5) \(Max = \dfrac{{81}}{8}\)
6) \(Max = \dfrac{4}{3}\)
7) \(Max = \dfrac{{60}}{{173}}\)
Giải thích các bước giải:
\(\begin{array}{l}
1)A = {x^2} + 2.x.5 + 25 - 26\\
= {\left( {x + 5} \right)^2} - 26\\
Do:{\left( {x + 5} \right)^2} \ge 0\forall x\\
\to {\left( {x + 5} \right)^2} - 26 \ge - 26\\
\to Min = - 26\\
\Leftrightarrow x = - 5\\
2)B = 4{x^2} + 2.2x.\dfrac{3}{2} + \dfrac{9}{4} + \dfrac{{67}}{4}\\
= {\left( {2x + \dfrac{3}{2}} \right)^2} + \dfrac{{67}}{4}\\
Do:{\left( {2x + \dfrac{3}{2}} \right)^2} \ge 0\\
\to {\left( {2x + \dfrac{3}{2}} \right)^2} + \dfrac{{67}}{4} \ge \dfrac{{67}}{4}\\
\to Min = \dfrac{{67}}{4}\\
\Leftrightarrow x = - \dfrac{3}{4}\\
3)C = 2{x^2} + 2.x\sqrt 2 .\dfrac{3}{{2\sqrt 2 }} + \dfrac{9}{8} - \dfrac{1}{8}\\
= {\left( {x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }}} \right)^2} - \dfrac{1}{8}\\
Do:{\left( {x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }}} \right)^2} \ge 0\forall x\\
\to {\left( {x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }}} \right)^2} - \dfrac{1}{8} \ge - \dfrac{1}{8}\\
\to Min = - \dfrac{1}{8}\\
\Leftrightarrow x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }} = 0\\
\to x = - \dfrac{3}{4}\\
4)D = - \left( {{x^2} - 2x + 1} \right) - 2\\
= - {\left( {x - 1} \right)^2} - 2\\
Do:{\left( {x - 1} \right)^2} \ge 0\forall x\\
\to - {\left( {x - 1} \right)^2} \le 0\\
\to - {\left( {x - 1} \right)^2} - 2 \le - 2\\
\to Max = - 2\\
\Leftrightarrow x = 1\\
5)F = - \left( {2{x^2} - 2.x\sqrt 2 .\dfrac{5}{{2\sqrt 2 }} + \dfrac{{25}}{8}} \right) + \dfrac{{81}}{8}\\
= - {\left( {x\sqrt 2 - \dfrac{5}{{2\sqrt 2 }}} \right)^2} + \dfrac{{81}}{8}\\
Do:{\left( {x\sqrt 2 - \dfrac{5}{{2\sqrt 2 }}} \right)^2} \ge 0\forall x\\
\to - {\left( {x\sqrt 2 - \dfrac{5}{{2\sqrt 2 }}} \right)^2} \le 0\\
\to - {\left( {x\sqrt 2 - \dfrac{5}{{2\sqrt 2 }}} \right)^2} + \dfrac{{81}}{8} \le \dfrac{{81}}{8}\\
\to Max = \dfrac{{81}}{8}\\
\Leftrightarrow x\sqrt 2 - \dfrac{5}{{2\sqrt 2 }} = 0\\
\to x = \dfrac{5}{4}\\
6)Do:{\left( {x + 2} \right)^2} \ge 0\forall x\\
\to {\left( {x + 2} \right)^2} + 3 \ge 3\\
\to \dfrac{4}{{{{\left( {x + 2} \right)}^2} + 3}} \le \dfrac{4}{3}\\
\to Max = \dfrac{4}{3}\\
\Leftrightarrow x = - 2\\
7)G = \dfrac{{15}}{{3{x^2} + 2.x\sqrt 3 .\dfrac{{3\sqrt 3 }}{2} + \dfrac{{27}}{4} + \dfrac{{173}}{4}}}\\
= \dfrac{{15}}{{{{\left( {x\sqrt 3 + \dfrac{{3\sqrt 3 }}{2}} \right)}^2} + \dfrac{{173}}{4}}}\\
Do:{\left( {x\sqrt 3 + \dfrac{{3\sqrt 3 }}{2}} \right)^2} \ge 0\forall x\\
\to {\left( {x\sqrt 3 + \dfrac{{3\sqrt 3 }}{2}} \right)^2} + \dfrac{{173}}{4} \ge \dfrac{{173}}{4}\\
\to \dfrac{{15}}{{{{\left( {x\sqrt 3 + \dfrac{{3\sqrt 3 }}{2}} \right)}^2} + \dfrac{{173}}{4}}} \le \dfrac{{60}}{{173}}\\
\to Max = \dfrac{{60}}{{173}}\\
\Leftrightarrow x\sqrt 3 + \dfrac{{3\sqrt 3 }}{2} = 0\\
\to x = - \dfrac{3}{2}
\end{array}\)