`a)`
`(3x-2)/4+(x+3)/2=(x-1)/3-(-x-1)/12`
`<=>(3(3x-2)+6(x+3))/12=(4(x-1)-(-x-1))/12`
`<=>3(3x-2)+6(x+3)=4(x-1)-(-x-1)`
`<=>15x+12=5x-3`
`<=>15x-5x=-3-12`
`<=>10x=-15`
`<=>x=-3/2`
Vậy `S={-3/2}`
``
`b)`
`(3x+1)(x-2)=(x-2)(x+1)`
`<=>(3x+1)(x-2)-(x-2)(x+1)=0`
`<=>(x-2)(3x+1-x-1)=0`
`<=>2x(x-2)=0`
`<=>` \(\left[ \begin{array}{l}2x=0\\x-2=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=0\\x=2\end{array} \right.\)
Vậy `S={0;2}`
``
`c)`
`2/(x-1)+2/(x+1)-(2x^2+2)/(x^2-1)=0(x\ne+-1)`
`<=>(2(x+1)-2(x-1)-(2x^2+2))/(x^2-1)=0`
`=>2(x+1)-2(x-1)-(2x^2+2)=0`
`<=>-2x^2+2=0`
`<=>-2(x^2-1)=0`
`<=>x^2-1=0`
`<=>x^2=1`
`<=>` \(\left[ \begin{array}{l}x=1(KTM)\\x=-1(KTM)\end{array} \right.\)
Vậy phương trình vô nghiệm.
``
`d)`
`(x-2)^2-x+3>(x-1)(x+3)-2x+5`
`<=>x^2-4x+4-x+3>x^2+2x-3-2x+5`
`<=>x^2-5x+7>x^2+2`
`<=>x^2-x^2-5x+7-2>0`
`<=>-5x+5>0`
`<=>-5x > -5`
`<=>x<1`
Vậy `S={x|x<1}`