Đáp án:
$\begin{array}{l}
a)Dkxd:x\# 0\\
2\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) - 3\left( {x + \dfrac{1}{x}} \right) + 2 = 0\\
Đặt:x + \dfrac{1}{x} = a\\
\Leftrightarrow {x^2} + \dfrac{1}{{{x^2}}}\\
= {x^2} + 2.x.\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - 2.x.\dfrac{1}{x}\\
= {\left( {x + \dfrac{1}{x}} \right)^2} - 2\\
= {a^2} - 2\\
PT:2.\left( {{a^2} - 2} \right) - 3a + 2 = 0\\
\Leftrightarrow 2{a^2} - 4 - 3a + 2 = 0\\
\Leftrightarrow 2{a^2} - 3a - 2 = 0\\
\Leftrightarrow 2{a^2} - 4a + a - 2 = 0\\
\Leftrightarrow \left( {a - 2} \right)\left( {2a + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
a - 2 = 0\\
2a + 1 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x + \dfrac{1}{x} - 2 = 0\\
2x + \dfrac{2}{x} + 1 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} - 2x + 1 = 0\\
2{x^2} + x + 2 = 0\left( {vn} \right)
\end{array} \right.\\
\Leftrightarrow {\left( {x - 1} \right)^2} = 0\\
\Leftrightarrow x = 1\left( {tmdk} \right)\\
Vậy\,x = 1\\
b)Dkxd:x\left( {x - 3} \right) \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge 3\\
x \le 0
\end{array} \right.\\
{x^2} - 3x - 10 + 3\sqrt {x\left( {x - 3} \right)} = 0\\
\Leftrightarrow x\left( {x - 3} \right) + 3\sqrt {x\left( {x - 3} \right)} - 10 = 0\\
Đặt:\sqrt {x\left( {x - 3} \right)} = a\left( {a \ge 0} \right)\\
\Leftrightarrow {a^2} + 3a - 10 = 0\\
\Leftrightarrow \left( {a - 2} \right)\left( {a + 5} \right) = 0\\
\Leftrightarrow a = 2\left( {do:a \ge 0} \right)\\
\Leftrightarrow \sqrt {x\left( {x - 3} \right)} = 2\\
\Leftrightarrow {x^2} - 3x = 4\\
\Leftrightarrow {x^2} - 3x - 4 = 0\\
\Leftrightarrow \left( {x - 4} \right)\left( {x + 1} \right) = 0\\
\Leftrightarrow x = 4;x = - 1\left( {tmdk} \right)\\
Vậy\,x = 4;x = - 1\\
c)x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) = 24\\
\Leftrightarrow x\left( {x + 3} \right)\left( {x + 1} \right)\left( {x + 2} \right) - 24 = 0\\
\Leftrightarrow \left( {{x^2} + 3x} \right)\left( {{x^2} + 3x + 2} \right) - 24 = 0\\
Đặt:{x^2} + 3x = a\\
\Leftrightarrow a.\left( {a + 2} \right) - 24 = 0\\
\Leftrightarrow {a^2} + 2a - 24 = 0\\
\Leftrightarrow {a^2} + 6a - 4a - 24 = 0\\
\Leftrightarrow \left( {a + 6} \right)\left( {a - 4} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
a + 6 = 0\\
a - 4 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} + 3x + 6 = 0\left( {vn} \right)\\
{x^2} + 3x - 4 = 0
\end{array} \right.\\
\Leftrightarrow \left( {x - 1} \right)\left( {x + 4} \right) = 0\\
\Leftrightarrow x = 1;x = - 4\\
Vậy\,x = 1;x = - 4
\end{array}$