e) $\lim_{n \to +\infty} $ ($\sqrt[]{x^{2}-3x}$ +x)=lim $\frac{-3x}{(\sqrt[]{x^{2}-3x} -x)}$ = lim$\frac{-3}{\sqrt[]{1-\frac{3}{x}}-1}$ = +∞
f)$\lim_{n \to -\infty} $ ($\sqrt[]{x^{2}-3x}$ +x)=lim$\frac{-3}{\sqrt[]{-(1-\frac{3}{x})}-1}$=$\frac{3}{2}$
g) lim =1/3
h)lim=-(1+x)/x^2=-2