Giải thích các bước giải:
Giả sử $AH,BK,CP$ lần lượt là các đường cao ứng với $BC,AC,AB$
a) Ta có:
$A\left( {2;0} \right),B\left( {2; - 3} \right),C\left( {0; - 1} \right)$
Khi đó:
$\begin{array}{l}
+ )\overrightarrow {AB} = \left( {0; - 3} \right) \Rightarrow \overrightarrow {{n_{AB}}} = \left( {1;0} \right)\\
\Rightarrow AB:1\left( {x - 2} \right) + 0\left( {y - 0} \right) = 0\\
\Rightarrow AB:x = 2\\
+ )\overrightarrow {AC} = \left( { - 2; - 1} \right) \Rightarrow \overrightarrow {{n_{AC}}} = \left( {1; - 2} \right)\\
\Rightarrow AC:1\left( {x - 2} \right) - 2\left( {y - 0} \right) = 0\\
\Rightarrow AC:x - 2y - 2 = 0\\
+ )\overrightarrow {BC} = \left( { - 2;2} \right) \Rightarrow \overrightarrow {{n_{BC}}} = \left( {1;1} \right)\\
\Rightarrow BC:1\left( {x - 2} \right) + 1\left( {y + 3} \right) = 0\\
\Rightarrow BC:x + y + 1 = 0\\
+ )AH \bot BC;\overrightarrow {{n_{AH}}} = \overrightarrow {BC} = \left( { - 2;2} \right)\\
\Rightarrow AH: - 2\left( {x - 2} \right) + 2\left( {y - 0} \right) = 0\\
\Rightarrow AH:x - y - 2 = 0\\
+ )BK \bot AC;\overrightarrow {{n_{BK}}} = \overrightarrow {AC} = \left( { - 2; - 1} \right)\\
\Rightarrow BK: - 2\left( {x - 2} \right) - 1\left( {y + 3} \right) = 0\\
\Rightarrow BK:2x + y - 1 = 0\\
+ )CP \bot AB;\overrightarrow {{n_{CP}}} = \overrightarrow {AB} = \left( {0; - 3} \right)\\
\Rightarrow CP:0\left( {x - 0} \right) - 3\left( {y + 1} \right) = 0\\
\Rightarrow CP:y = - 1
\end{array}$
b) Ta có:
$A\left( {1;4} \right),B\left( {3; - 1} \right),C\left( {6;2} \right)$
Khi đó:
$\begin{array}{l}
+ )\overrightarrow {AB} = \left( {2; - 5} \right) \Rightarrow \overrightarrow {{n_{AB}}} = \left( {5;2} \right)\\
\Rightarrow AB:5\left( {x - 1} \right) + 2\left( {y - 4} \right) = 0\\
\Rightarrow AB:5x + 2y - 13 = 0\\
+ )\overrightarrow {AC} = \left( {5; - 2} \right) \Rightarrow \overrightarrow {{n_{AC}}} = \left( {2;5} \right)\\
\Rightarrow AC:2\left( {x - 1} \right) + 5\left( {y - 4} \right) = 0\\
\Rightarrow AC:2x + 5y - 12 = 0\\
+ )\overrightarrow {BC} = \left( {3;3} \right) \Rightarrow \overrightarrow {{n_{BC}}} = \left( {1; - 1} \right)\\
\Rightarrow BC:1\left( {x - 3} \right) - 1\left( {y + 1} \right) = 0\\
\Rightarrow BC:x - y - 4 = 0\\
+ )AH \bot BC;\overrightarrow {{n_{AH}}} = \overrightarrow {BC} = \left( {3;3} \right)\\
\Rightarrow AH:3\left( {x - 1} \right) + 3\left( {y - 4} \right) = 0\\
\Rightarrow AH:x + y - 5 = 0\\
+ )BK \bot AC;\overrightarrow {{n_{BK}}} = \overrightarrow {AC} = \left( {5; - 2} \right)\\
\Rightarrow BK:5\left( {x - 3} \right) - 2\left( {y + 1} \right) = 0\\
\Rightarrow BK:5x - 2y - 17 = 0\\
+ )CP \bot AB;\overrightarrow {{n_{CP}}} = \overrightarrow {AB} = \left( {2; - 5} \right)\\
\Rightarrow CP:2\left( {x - 6} \right) - 5\left( {y - 2} \right) = 0\\
\Rightarrow CP:2x - 5y - 2 = 0
\end{array}$