Đáp án:
a) \(x \in \emptyset \)
b) x=3
c) \(x = \dfrac{1}{3}\)
d) \(\left[ \begin{array}{l}
x = \dfrac{5}{2}\\
x = - \dfrac{2}{3}
\end{array} \right.\)
e) \(x = \dfrac{3}{8}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ge 4\\
\sqrt {x + 3} = 4 + \sqrt {x - 4} \\
\to x + 3 = 16 + 8\sqrt {x - 4} + x - 4\\
\to 9 = - 8\sqrt {x - 4} \left( {KTM} \right)\\
\to x \in \emptyset \\
b)DK:x \ge 2\\
\sqrt {3x - 5} + \sqrt {x - 2} = 3\\
\to 3x - 5 + 2\sqrt {\left( {3x - 5} \right)\left( {x - 2} \right)} + x - 2 = 9\\
\to 2\sqrt {3{x^2} - 11x + 10} = 16 - 4x\\
\to \sqrt {3{x^2} - 11x + 10} = 8 - 2x\\
\to 3{x^2} - 11x + 10 = 64 - 32x + 4{x^2}\left( {DK:4 \ge x} \right)\\
\to {x^2} - 21x + 54 = 0\\
\to \left( {x - 18} \right)\left( {x - 3} \right) = 0\\
\to \left[ \begin{array}{l}
x = 18\left( l \right)\\
x = 3
\end{array} \right.\\
c)\sqrt {{{\left( {x - 2} \right)}^2}} = 2x + 1\\
\to \left| {x - 2} \right| = 2x + 1\\
\to \left[ \begin{array}{l}
x - 2 = 2x + 1\left( {DK:x \ge 2} \right)\\
x - 2 = - 2x - 1\left( {DK:x < 2} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = - 3\left( l \right)\\
3x = 1
\end{array} \right.\\
\to x = \dfrac{1}{3}\\
d)\sqrt {{{\left( {5x - 3} \right)}^2}} = x + 7\\
\to \left| {5x - 3} \right| = x + 7\\
\to \left[ \begin{array}{l}
5x - 3 = x + 7\\
5x - 3 = - x - 7
\end{array} \right.\\
\to \left[ \begin{array}{l}
4x = 10\\
6x = - 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{5}{2}\\
x = - \dfrac{2}{3}
\end{array} \right.\\
e)\sqrt {{{\left( {5x - 1} \right)}^2}} = 3x - 2\\
\to \left| {5x - 1} \right| = 3x - 2\\
\to \left[ \begin{array}{l}
5x - 1 = 3x - 2\left( {DK:x \ge \dfrac{1}{5}} \right)\\
5x - 1 = - 3x + 2\left( {DK:x < \dfrac{1}{5}} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
2x = - 1\\
8x = 3
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = - \dfrac{1}{2}\left( l \right)\\
x = \dfrac{3}{8}
\end{array} \right.
\end{array}\)