Đáp án:
Giải thích các bước giải:
`(m-2)^4=-m+2`
`⇔ (m-2)^4+m-2=0`
`⇔ (m-2)^4+(m-2)=0`
`⇔ (m-2)[(m-2)^3+1]=0`
`⇔` \(\left[ \begin{array}{l}m-2=0\\(m-2)^3+1=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}m=2\\(m-2)^3=-1\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}m=2\\m-2=-1\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}m=2\\m=1\end{array} \right.\)
Vậy `m \in {1;2}`