$\left\{\begin{array}{l} 2x^2-3x-2<0\\ 1-4x^2\ge 0\end{array} \right.\\ \Leftrightarrow \left\{\begin{array}{l} (x-2)(2x+1)<0\\ (1-2x)(1+2x) \ge 0\end{array} \right.\\ \Leftrightarrow \left\{\begin{array}{l} -\dfrac{1}{2}<x<2\\ -\dfrac{1}{2} \le x \le \dfrac{1}{2}\end{array} \right.\\ \Leftrightarrow -\dfrac{1}{2}<x\le \dfrac{1}{2}\\\text{Vậy } x \in \left(- \dfrac{1}{2}; \dfrac{1}{2}\right]$.