$a)A=^{}$ $x^{2}+23$ $+9y^{2}+8x-12$
$=(x^{2}+8x+16)$ $+(9y^{2}-12y+4)+3$
$ A=(x+4)^{2}$ $+(3y-2)^{2}+3$
Vì $\left \{ {{(x+4)^{2}≥0 } \atop {(3y-2)^{2}≥0}} ∀x\right.$
$⇒(x+4)^{2}$ $+(3y-2)^{2}$ $≥0^{}∀x$
$⇒(x+4)^{2}$ $+(3y-2)^{2}+3$ $≥3^{}∀x$
$hay^{}$ $A^{}≥3$
$A=3^{}⇔$ $\left \{ {{x+4=0} \atop {3y-2=0}} \right.$
$⇔\left \{ {{x=-4} \atop {y=\frac{2}{3}}} \right.$
$Vậy^{}$ $MinA=3^{}$ $⇔\left \{ {{x=-4} \atop {y=\frac{2}{3}}} \right.$
$b)B=2x^{2}+y^{2}+2x-2xy-4y+8$
$=(x^{2}+y^{2}+4x-2xy-4y+4)+(x^{2}-2x+1)+3$
$=(x-y+2)^{2}+(x-1)^{2}+3$
Vì $\left \{ {{(x-y+2)^{2}≥0 } \atop {(x-1)^{2}≥0}} ∀x\right.$
$⇒(x-y+2)^{2}+(x-1)^{2}≥0∀x$
$⇒(x-y+2)^{2}+(x-1)^{2}+3≥3 ∀x$
$hay^{}$ $B^{}≥3$
$B=3^{}⇔$ $\left \{ {{x-y+2=0} \atop {x-1=0}} \right.$
$⇔\left \{ {{x-y=-2} \atop {x=1}} \right.$
$⇔\left \{ {{1-y=-2} \atop {x=1}} \right.$
$⇔\left \{ {{y=3} \atop {x=1}} \right.$
$Vậy^{}$ $MinB=3^{}$ $⇔\left \{ {{x=1} \atop {y=3}} \right.$