Đáp án:
g) \(\left[ \begin{array}{l}
x = \dfrac{2}{3}\\
x = - \dfrac{5}{3}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
d)5 + \dfrac{3}{8} - \dfrac{4}{5}\left( {x - 1} \right) = 4 + \dfrac{3}{8}\\
\to 1 = \dfrac{4}{5}\left( {x - 1} \right)\\
\to x - 1 = \dfrac{5}{4}\\
\to x = \dfrac{9}{4}\\
e)\left( {x - \dfrac{1}{2}} \right) = \dfrac{5}{3}\\
\to x = \dfrac{{13}}{6}\\
f){\left( {x + \dfrac{1}{2}} \right)^2} = 1\\
\to \left| {x + \dfrac{1}{2}} \right| = 1\\
\to \left[ \begin{array}{l}
x + \dfrac{1}{2} = 1\\
x + \dfrac{1}{2} = - 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{1}{2}\\
x = - \dfrac{3}{2}
\end{array} \right.\\
g)\left| {x + \dfrac{1}{2}} \right| = \dfrac{7}{6}\\
\to \left[ \begin{array}{l}
x + \dfrac{1}{2} = \dfrac{7}{6}\\
x + \dfrac{1}{2} = - \dfrac{7}{6}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{2}{3}\\
x = - \dfrac{5}{3}
\end{array} \right.
\end{array}\)