$\left \{ {{2x+ \sqrt[]{3}y= \sqrt[]{3} } \atop {\sqrt[]{2}x -3y=\sqrt[]{2}}} \right.$
⇔$\left \{ {2x+\sqrt[]{3}y= \sqrt[]{3} } \atop {{2x-3\sqrt[]{2}y=4 }} \right.$
⇔$\left \{ {{(\sqrt[]{3}+3 \sqrt[]{2})y=\sqrt[]{3}-4 } \atop {2x-3\sqrt[]{2}y=4}} \right.$
⇔$\left \{ {{y=\frac{\sqrt[]{3}-4}{\sqrt[]{3}+3 \sqrt[]{2} } } \atop {x=0.9048643644}} \right.$