1.4 Xét số hữu tỉ a/b, có thể coi b > 0.
a) Nếu a, b cùng dấu thì a > 0 và b > 0.
Suy ra (a/b) > (0/b) = 0 tức là a/b dương.
b) Nếu a, b khác dấu thì a < 0 và b > 0.
Suy ra (a/b) < (0/b) = 0 tức là a/b âm.
1.5TH1: Nếu a < b ⇒ an < bn ⇒ ab + an < ab + bn
hay a(b + n) < b.(a + n)
Giải sách bài tập Toán 7 | Giải sbt Toán 7
TH2: Nếu a > b ⇒ an > bn ⇒ ab + an > ab + bn
hay a(b + n) > b(a + n)
TH3: Nếu a = b
140 a) Với mọi x, y ∈ Q ta luôn có x ≤ |x| và -x ≤ |x|;
y ≤ |y| và -y ≤ |y| ⇒ x + y ≤ |x| + |y| và -x – y ≤ |x| + |y|
hay x + y ≥ -(|x| + |y|).
Do đó –(|x| + |y|) ≤ x + y ≤ |x| + |y|.
Vậy |x + y| ≤ |x| + |y|.
(Dấu “=” xảy ra khi xy ≥ 0.
b) Theo câu a ta có: |x - y| + |y| ≥ |x – y + y| = |x| ⇒ |x - y| ≥ |x| - |y|.
141 Vì |1 - x| = |x - 1| nên A = |x - 2001| + |x - 1|
= |x - 2001| + |1 - x| ≥| x – 2001 + 1 - x| =2000
Vậy giá trị nhỏ nhất của biểu thức A = 2000 khi x – 2001 và 1 – x cùng dấu
Vậy 1 ≤ x ≤ 2001