Đáp án + Giải thích các bước giải:
`a)`
`9x^{2}-6x-3=0`
`<=>(9x^{2}-6x+1)-4=0`
`<=>(3x-1)^{2}-2^{2}=0`
`<=>(3x-1-2)(3x-1+2)=0`
`<=>(3x-3)(3x+1)=0`
`<=>` \(\left[ \begin{array}{l}3x-3=0\\3x+1=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac{1}{3}\end{array} \right.\)
Vậy `S={1;-(1)/(3)}`
`b)`
`x^{3}+9x^{2}+27x+19=0`
`<=>(x^{3}+9x^{2}+27x+27)-8=0`
`<=>(x+3)^{3}-2^{3}=0`
`<=>(x+3-2)[(x+3)^{2}+2(x+3)+4]=0`
`<=>(x+1)(x^{2}+6x+9+2x+6+4)=0`
`<=>(x+1)(x^{2}+8x+19)=0`
`<=>x+1=0` ( Vì `x^{2}+8x+19=(x+4)^{2}+3>0` với mọi `x` )
`<=>x=-1`
Vậy `S={-1}`
`c)`
`x(x+5)(x-5)-(x+2)(x^{2}-2x+4)=3`
`<=>x(x^{2}-25)-(x^{3}+8)=3`
`<=>x^{3}-25x-x^{3}-8=3`
`<=>-25x-8=3`
`<=>-25x=11`
`<=>x=-(11)/(25)`
Vậy `S={-(11)/(25)}`
`d)`
`x^{2}-4x+4=25`
`<=>(x-2)^{2}-5^{2}=0`
`<=>(x-2-5)(x-2+5)=0`
`<=>(x-7)(x+3)=0`
`<=>` \(\left[ \begin{array}{l}x-7=0\\x+3=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=7\\x=-3\end{array} \right.\)
Vậy `S={7;-3}`