Đáp án:
\(\begin{array}{l}
{h_{\max }} = 8m\\
h = 3,4286m
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
W = W'\\
{W_t} + {W_d} = {W_{t\max }}\\
mgh + \frac{1}{2}m{v^2} = mg{h_{\max }}\\
{h_{\max }} = \frac{{gh + \frac{1}{2}{v^2}}}{g} = \frac{{10.3 + \frac{1}{2}{{.10}^2}}}{{10}} = 8m\\
W' = W'' = {W_t} + {W_d} = {W_t} + \frac{4}{3}{W_t} = \frac{7}{3}{W_t}\\
mg{h_{\max }} = \frac{7}{3}mgh\\
h = \frac{3}{7}{h_{\max }} = \frac{3}{7}.8 = 3,4286m
\end{array}\)