Đáp án:
$v_1 = v_2 = v_{tb} = 3 (km/h)$
Giải thích các bước giải:
$s_1 = 2km$
$t_1 = 40' = \dfrac{2}{3} h$
$s_2 = 0,5km$
$t_2 = 10' = \dfrac{1}{6}h$
Vận tốc trung bình trên đoạn 1 là:
$v_1 = \dfrac{s_1}{t_1} = \dfrac{2}{\dfrac{2}{3}} = 3 (km/h)$
Vận tốc trung bình trên đoạn 2 là:
$v_2 = \dfrac{s_2}{t_2} = \dfrac{0,5}{\dfrac{1}{6} = 3 (km/h)$
Vận tốc trung bình trên cả quãng đường là:
$v_{tb} = \dfrac{s_1 + s_2}{t_1 + t_2} = \dfrac{2 + 0,5}{\dfrac{2}{3} + \dfrac{1}{6}} = 3 (km/h)$