Cho \(\Delta ABC\) nội tiếp đường tròn \(\left( C \right)\), đường phân giác trong và ngoài của \(\angle A\) cắt đường tròn \(\left( C \right)\) lần lượt tại \(M\left( {0;\,\, - 3} \right),\,\,N\left( { - 2;\,\,1} \right)\). Tọa độ các điểm \(B,\,\,C\) biết đường thẳng \(BC\) đi qua \(E\left( {2;\,\, - 1} \right)\) và \(C\)có hoành độ dương là
A.\(B\left( { - 2;\,\,3} \right),\,\,C\left( {\frac{6}{5};\,\, - \frac{7}{5}} \right)\)
B.\(B\left( { - 2;\,\, - 3} \right),\,\,C\left( {\frac{6}{5};\,\,\frac{7}{5}} \right)\)
C.\(B\left( {2;\,\,3} \right),\,\,C\left( { - \frac{6}{5};\,\,\frac{7}{5}} \right)\)
D.\(B\left( { - 2;\,\, - 3} \right),\,\,C\left( {\frac{6}{5};\,\, - \frac{7}{5}} \right)\)