Đáp án đúng: A
Giải: x1 và x2 vuông pha nên: ${{\left( \frac{{{x}_{1}}}{{{A}_{1}}} \right)}^{2}}+{{\left( \frac{{{x}_{2}}}{{{A}_{2}}} \right)}^{2}}=1$
X2 và x3 vuông pha nên: ${{\left( \frac{{{x}_{2}}}{{{A}_{2}}} \right)}^{2}}+{{\left( \frac{{{x}_{3}}}{{{A}_{3}}} \right)}^{2}}=1$
Tại t2${{\left( \frac{-20}{{{A}_{1}}} \right)}^{2}}+{{\left( \frac{0}{{{A}_{2}}} \right)}^{2}}=1\,\,\,=>\,\,\,{{A}_{1}}=20\,cm$
Tại t1$\displaystyle {{\left( \frac{{{x}_{1}}}{{{A}_{1}}} \right)}^{2}}+{{\left( \frac{{{x}_{2}}}{{{A}_{2}}} \right)}^{2}}=1\,\,\,\,\,\,\,=>\,\,\,\,\,\,\,\,{{\left( \frac{-10\sqrt{3}}{20} \right)}^{2}}+{{\left( \frac{15}{{{A}_{2}}} \right)}^{2}}=1\,\,\,\,=>\,\,\,\,{{A}_{2}}=30\,\,cm$
$\displaystyle {{\left( \frac{{{x}_{2}}}{{{A}_{2}}} \right)}^{2}}+{{\left( \frac{{{x}_{3}}}{{{A}_{3}}} \right)}^{2}}=1\,\,\,\,\,\,\,\,=>\,\,\,\,\,\,\,\,{{\left( \frac{15}{30} \right)}^{2}}+{{\left( \frac{30\sqrt{3}}{{{A}_{3}}} \right)}^{2}}=1\,\,\,\,=>\,\,\,\,{{A}_{3}}=60\,\,cm$
$\displaystyle A=\sqrt{A_{2}^{2}+{{({{A}_{3}}-{{A}_{1}})}^{2}}}=50\,cm$