Đáp án:
\(\left( {C''} \right):{\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} = 4\)
Giải thích các bước giải:
$\begin{array}{l}
{\left( {x - 3} \right)^2} + {\left( {y - 5} \right)^2} = 4\,\left( C \right)\\
\left( C \right)\,co\,tam\,I\left( {3;5} \right),ban\,kinh\,R = 2\\
I' = {Q_{\left( {O;{{90}^0}} \right)}}\left( I \right) \Rightarrow I'\left( { - 5;3} \right)\\
I'' = {T_{\overrightarrow u }}\left( {I'} \right) \Rightarrow \left\{ \begin{array}{l}
{x_{I''}} = - 5 + 3 = - 2\\
{y_{I''}} = 3 + 1 = 4
\end{array} \right. \Rightarrow I''\left( { - 2;4} \right)\\
\left( {C''} \right)\,co\,tam\,I''\left( { - 2;4} \right),ban\,kinh\,R'' = 2\\
\Rightarrow \left( {C''} \right):{\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} = 4
\end{array}$