`P=(x+4)/(\sqrt{x}+2)+(x+3\sqrt{x})/\sqrt{x}` ĐK: `x>0`
`P=(\sqrt{x}(x+4)+(x+3\sqrt{x})(\sqrt{x}+2))/(\sqrt{x}(\sqrt{x}+2))`
`P=(x\sqrt{x}+4\sqrt{x}+x\sqrt{x}+2x+3x+6\sqrt{x})/(\sqrt{x}(\sqrt{x}+2))`
`P=(2x\sqrt{x}+10\sqrt{x}+5x)/(\sqrt{x}(\sqrt{x}+2))`
`P=(\sqrt{x}(2x+5\sqrt{x}+10))/(\sqrt{x}(\sqrt{x}+2))`
`P=(2x+5\sqrt{x}+10)/(\sqrt{x}+2)`
Vậy `P=(2x+5\sqrt{x}+10)/(\sqrt{x}+2)` với `x>0`