`P=((x+2)/(xsqrt{x}-1)+(sqrt{x})/(x+sqrt{x}+1)+1/(1-sqrt{x})):(sqrt{x}-1)/2`
`ĐKXĐ:x>=0,x ne 1`
`P=((x+2)/((sqrt{x}-1)(x+sqrt{x}+1))+(sqrt{x}(sqrt{x}-1))/((sqrt{x}-1)(x+sqrt{x}+1))-(x+sqrt{x}+1)/((sqrt{x}-1)(x+sqrt{x}+1))).2/(sqrt{x}-1)`
`=((x+2+x-sqrt{x}-x-sqrt{x}-1)/(xsqrt{x}-1)).2/(sqrt{x}-1)`
`=(2(x-2sqrt{x}+1))/[(sqrt{x}-1)^2(x+sqrt{x}+1)]`
`=[2(sqrt{x}-1)^2]/[(sqrt{x}-1)^2(x+sqrt{x}+1)]`
`=2/(x+sqrt{x}+1)`
`vì` `x+sqrt{x}+1>0,2>0`
`=>P=2/(x+sqrt{x}+1)>0`