Mark the letter A, B, C or D on your answer sheet to indicate the correct answer to each of the following questions.
Paul has just sold his ________ car and intends to buy a new one.




A.black old Japanese
B.Japanese old black
C.old black Japanese
D.old Japanese black

Các câu hỏi liên quan

Read the following passage and mark the letter A, B, C or D on your answer sheet to indicate the correct answer to each of the following questions.
In the history of technology, computers and calculators were innovative developments. They are essentially different from all other machines because they have a memory. This memory stores instructions and information. In a calculator, the instructions are the various functions of arithmetic, which are permanently remembered by the machine and cannot be altered or added to. The information consists of the numbers which are keyed in.
An electronic pocket calculator can perform almost instant arithmetic. A calculator requires an input unit to feed in numbers, a processing unit to make the calculation, a memory unit, and an output unit to display the result. The calculator is powered by a small battery or by a panel of solar cells. Inside is a microchip that contains the memory and processing units and also controls the input unit, which is the keyboard, and the output unit, which is the display.
The input unit has keys for numbers and operations. Beneath the key is a printed circuit board containing a set of contacts for each key. Pressing a key closes the contacts and sends a signal along a pair of lines in the circuit board to the processing unit, in which the binary code for that key is stored in the memory. The processing unit also sends the code to the display. Each key is connected by a different pair of lines to the processing unit, which repeatedly checks the lines to find out when a pair is linked by a key.
The memory unit stores the arithmetic instructions for the processing unit and holds the temporary results that occur during calculation. Storage cells in the memory unit hold the binary codes for the keys that have been pressed. The number codes, together with the operation code for the plus key, are held in temporary cells until the processing unit requires them.
When the equals key is pressed, it sends a signal to the processing unit. This takes the operation code - for example, addition - and the two numbers being held in the memory unit and performs the operation on the two numbers. After the addition is done, the result goes to the decoder in the calculator's microchip. This code is then sent to the liquid crystal display unit, which shows the result, or output, of the calculation.
The word “contacts” in paragraph 3 is closest in meaning to _______.




A.connections
B.commands
C.locations
D.codes

Read the following passage and mark the letter A, B, C or D on your answer sheet to indicate the correct answer to each of the following questions.
People appear to be born to compute. The numerical skills of children develop so early and so inexorably that it is easy to imagine an internal clock of mathematical maturity guiding their growth. Not long after learning to walk and talk, they can set the table with impressive accuracy – one plate, one knife, one spoon, one fork, for each of the five chairs. Soon they are capable of noting that they have placed five knives, spoons, and forks on the table and, a bit later, that this amounts to fifteen pieces of silverware. Having thus mastered addition, they move on to subtraction. It seems almost reasonable to expect that if a child were secluded on a desert island at birth and retrieved seven years later, he or she could enter a second-grade mathematics class without any serious problems of intellectual adjustment.
Of course, the truth is not so simple. This century, the work of cognitive psychologists has illuminated the subtle forms of daily learning on which intellectual progress depends. Children were observed as they slowly grasped or, as the case might be, bumped into concepts that adults that for granted, as they refused, for instance, to concede that quantity is unchanged as water pours from a short stout glass into a tall thin one. Psychologists have since demonstrated that young children, asked to count the pencils in a pile, readily report the number of blue or red pencils, but must be coaxed into finding the total.
Such studies have suggested that the rudiments of mathematics are mastered gradually, and with effort. They have also suggested that the very concept of abstract numbers – the idea of a oneness, a twoness, a threeness that applies to any class of objects - is a prerequisite for doing anything more mathematically demanding than setting a table – is itself far from innate.
What does the passage mainly discuss?




A.Trends in teaching mathematics to children
B.The fundamental concepts of mathematics that children must learn
C.The development of mathematical ability in children
D.The use of mathematics in child psychology

Read the following passage and mark the letter A, B, C or D on your answer sheet to indicate the correct answer to each of the questions from 33 to 37.
Different cultures follow their own special customs when a child’s baby teeth fall out. In Korea, for example, they have the custom of throwing lost teeth up on the roof of a house. According to tradition, a magpie will come and take the tooth. Later, the magpie will return with a new tooth for the child. In other Asian countries, such as Japan and Vietnam, children follow a similar tradition of throwing their lost teeth onto the roofs of houses.
Birds aren't the only animals thought to take lost teeth. In Mexico and Spain, tradition says a mouse takes a lost tooth and leaves some money. However, in Mongolia, dogs are responsible for taking teeth away. Dogs are highly respected in Mongolian culture and are considered guardian angels of the people. Tradition says that the new tooth will grow good and strong if the baby tooth is fed to a guardian angel. Accordingly, parents in Mongolia will put their child's lost tooth in a piece of meat and feed it to a dog.
The idea of giving lost teeth to an angel or fairy is also a tradition in the West. Many children in Western countries count on the Tooth Fairy to leave money or presents in exchange for a tooth. The exact origins of the Tooth Fairy are a mystery, although the story probably began in England or Ireland centuries ago. According to tradition, a child puts a lost tooth under his or her pillow before going to bed. In the wee hours, while the child is sleeping, the Tooth Fairy takes the tooth and leaves something else under the pillow. In France, the Tooth Fairy leaves a small gift. In the United States, however, the Tooth Fairy usually leaves money. These days, the rate is 1USD to 5USD per tooth, adding up to a lot of money from the Tooth Fairy!
(Source: Reading Challenge 2 by Casey Malarcher & Andrea Janzen)
What is the passage mainly about?




A.Presents for young children’s lost teeth
B.Traditions concerning children’s lost teeth
C.Customs concerning children’s new teeth
D.Animals eating children’s lost teeth