Định lý Talet trong tam giác
1. Định lý Talet thuận
Định lý Talet thuận sẽ được phát biểu như sau:
Nếu có một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó sẽ định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
Ví dụ: Cho tam giác ABC, đường thẳng d cắt AB tại D, cắt AC tại E và song song với BC.
Theo định lý Talet, ta có:
2. Định lý Talet đảo
Định lý Talet đảo sẽ được phát biểu như sau:
Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
Lưu ý: Định lý vẫn đúng cho trường hợp đường thẳng cắt phần kéo dài hai cạnh của tam giác.
Ví dụ: Với hình minh họa như HÌNH DƯỚI, nếu trong tam giác ABC ta chứng minh được các cạnh có tỉ lệ giống như 1 trong 3 tỉ lệ trên thì theo định lý Talet đảo sẽ suy ra: DE // BC.
Hệ quả của định lý Talet
Được phát biểu như sau:
- Hệ quả 1: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có 3 cạnh tương ứng tỉ lệ với 3 cạnh tam giác đã cho
- Hệ quả 2: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì sẽ tạo ra một tam giác mới đồng dạng với tam giác ban đầu
- Hệ quả 3 – Talet mở rộng: Nếu 3 đường thẳng đồng quy thì chắn trên hai đường thẳng song song các cặp đoạn thẳng tương ứng tỉ lệ
HỌC TỐT :3