b, (x−y)3+(y−z)3+(z−x)3
=(x−y)2(x−y)−(y−z)2[(x−y)+(z−x)]+(z−x)2(z−x)
=(x−y)2(x−y)−(y−z)2(x−y)−(y−z)2(z−x)+(z−x)2(z−x)
=(x−y)[(x−y)2−(y−z)2]−(z−x)[(y−z)2−(z−x)2]
=(x−y)(x−y−y+z)(x−y+y−z)−(z−x)(y−z−z+x)(y−z+z−x)
=(x−y)(x−2y+z)(x−z)−(z−x)(y−2z+x)(y−x)
=(x−y)(x−2y+z)(x−z)−(x−z)(y−2z+x)(x−y)
=(x−y)(x−z)(x−2y+z−y+2z−x)
=(x−y)(x−z)(3z−3y)
=3(x−y)(x−z)(z−y)
c, x2y2(y−x)+y2z2(z−y)−z2x2(z−x)
=x2y2(y−x)−y2z2[(y−x)−(z−x)]−z2x2(z−x)
=x2y2(y−x)−y2z2(y−x)+y2z2(z−x)−z2x2(z−x)
=(x2y2−y2z2)(y−x)+(y2z2−z2x2)(z−x)
=y2(x−z)(x+z)(y−x)+z2(y−x)(x+y)(z−x)
=y2(x−z)(x+z)(y−x)−z2(y−x)(x+y)(x−z)
=(x−z)(y−x)[y2(x+z)−z2(x+y)]
=(x−z)(y−x)(y2x+y2z−z2x−z2y)
=(x−z)(y−x)[x(y2−z2)+yz(y−z)]
=(x−z)(y−x)[x(y−z)(y+z)+yz(y−z)]
=(x−z)(y−x)(y−z)(xy+xz+yz)
d, x3+y3+z3−3xyz
=(x+y)3+z3−3xyz−3xy(x+y)
=(x+y+z)[(x+y)2−(x+y)z+z2]−3xy(x+y+z)
=(x+y+z)(x2+2xy+y2−xz−yz+z2−3xy)
=(x+y+z)(x2+y2+z2−xy−yz−xz)