$a^3-3a+3b-b^3_{}$
$=(a-b)(a^2+ab+b^2)-3.(a-b)_{}$
$=(a-b)(a^2+ab+b^2-3)_{}$
$b)_{}$ $x^2-y^2+12y-36_{}$
$=x^2-(y^2-12y+36)_{}$
$=x^2-(y-6)^2_{}$
$=[ x-(y-6)].[ x+(y-6)]_{}$
$=(x-y+6)(x+y-6)_{}$
$c)_{}$ $(x+2)^2-x^2+2x-1_{}$
$=x^2+4x+4-x^2+2x-1_{}$
$=6x+3_{}$
$=3.(2x+1)_{}$
$d)_{}$ $(x+2)(x+3)(x+4)(x+5)-24_{}$
$=(x+2)(x+5)(x+4)(x+3)-24_{}$
$=(x^2+7x+10)(x^2+7x+12)-24_{}$
$Đặt_{}$ $y=x^2+7x+10_{}$
$y.(y+2)-24_{}$
$=y^2+2y-24_{}$
$=y^2+6y-4y-24_{}$
$=y.(y+6)-4.(y+6)_{}$
$=(y+6)(y-4)_{}$
$Thay_{}$ $(y+6)(y-4)_{}$ $vào_{}$ $lại_{}$
$=(x^2+7x+10+6)(x^2+7x+10-4)_{}$
$=(x^2+7x+16)(x^2+7x+6)_{}$