Đáp án:
`ab^3-ac^3+bc^3-a^3b+a^3c-b^3c`
Giải thích các bước giải:
`a ( b - c )^3 + b ( c - a )^3 + c ( a - b )^3`
`=a(b^3-3b^2c+3bc^2-c^3)+b(c^3-3c^2a+3ca^2-a^3)+c(a^3-3a^2b+3ab^2-b^3)`
`=ab^3-3ab^2c+3abc^2-ac^3+bc^3-3bc^2a+3bca^2-ba^3+ca^3-3ca^2b+3cab^2-cb^3`
`=ab^3-3ab^2c+3abc^2-ac^3+bc^3-3abc^2+3a^2bc-a^3b+a^3c-3a^2bc+3ab^2c-b^3c`
`=ab^3+(-3ab^2c+3ab^2c)+(3abc^2-3abc^2-)-ac^3+bc^3+(3a^2bc-3a^2bc)-a^3b+a^3c-b^3c`
`=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c`