`x^3+y^3+z^3-3xyz`
`⇔(x+y)^3-3x^2y-3xy^2+z^3-3xyz`
`⇔(x+y)^3+z^3-3xy(x+y+z)`
`⇔(x+y)^3+3(x+y)^2 . z +3(x+y)z^2+z^3 - 3(x+y)^2 . z - 3(x+y)z^2 -3xy(x+y+z)`
`⇔(x+y+z)^3-3z(x+y)(x+y+z)-3xy(x+y+z)`
`⇔(x+y+z)^3-3(x+y+z)(zx+zy+xy)`
`⇔(x+y+z)[(x+y+z)^2-3zx-3zy-3xy)]`
`⇔(x+y+z)(x^2+y^2+z^2+2xy+2yz+2xz-3zx-3zy-3xy)`
`⇔(x+y+z)(x^2+y^2+z^2-zx-zy-xy)`