Phương trình đường thẳng đi qua $2$ điểm $A\left( {{x}_{A}};{{y}_{A}};{{z}_{A}} \right)$ , $B\left( {{x}_{B}};{{y}_{B}};{{z}_{B}} \right)$ khi $\left\{ \begin{align}
& {{x}_{A}}\ne {{x}_{B}} \\
& {{y}_{A}}\ne {{y}_{B}} \\
& {{z}_{A}}\ne {{z}_{B}} \\
\end{align} \right.$ là
A.$\dfrac{x-{{x}_{A}}}{{{x}_{A}}+{{x}_{B}}}=\dfrac{y-{{y}_{A}}}{{{y}_{A}}+{{y}_{B}}}=\dfrac{z-{{z}_{A}}}{{{z}_{A}}+{{z}_{B}}}$
B.$\dfrac{x+{{x}_{A}}}{{{x}_{A}}-{{x}_{B}}}=\dfrac{y+{{y}_{A}}}{{{y}_{A}}-{{y}_{B}}}=\dfrac{z+{{z}_{A}}}{{{z}_{A}}-{{z}_{B}}}$
C.$\dfrac{x-{{x}_{A}}}{{{x}_{A}}-{{x}_{B}}}=\dfrac{y-{{y}_{A}}}{{{y}_{A}}-{{y}_{B}}}=\dfrac{z-{{z}_{A}}}{{{z}_{A}}-{{z}_{B}}}$
D.$\dfrac{x}{{{x}_{A}}+{{x}_{B}}}=\dfrac{y}{{{y}_{A}}+{{y}_{B}}}=\dfrac{z}{{{z}_{A}}+{{z}_{B}}}$