Phương trình \({\rm{co}}{{\rm{s}}^2}x - {\sin ^2}x = 1\) có bao nhiêu nghiệm thuộc đoạn \(\left[ {0;\pi } \right]\)? A.\(2\). B.\(1\) C.\(3\). D.\(0\).
Phương pháp giải: - Sử dụng công thức: \({\rm{co}}{{\rm{s}}^2}x - {\sin ^2}x = {\rm{cos}}\,{\rm{2}}x.\) - Giải phương trình lượng giác đặc biệt: \(\cos \alpha = 1 \Leftrightarrow \alpha = k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\). Giải chi tiết:Ta có: \(\begin{array}{l}{\rm{co}}{{\rm{s}}^2}x - {\sin ^2}x = 1 \Leftrightarrow {\rm{cos}}\,{\rm{2}}x = 1\\ \Leftrightarrow 2x = k2\pi ,\,\,k \in \mathbb{Z} \Leftrightarrow x = k\pi ,\,\,k \in \mathbb{Z}\end{array}\) Mà \(x \in \left[ {0;\pi } \right] \Rightarrow x \in \left\{ {0;\pi } \right\}\). Vậy phương trình có 2 nghiệm thỏa mãn. Chọn A.