Đáp án:
`(3^32-1)/8`
Giải thích các bước giải:
`(3^2+1)(3^4+1)(3^8+1)(3^16+1)`
`=[8(3^2+1)(3^4+1)(3^8+1)(3^16+1)]/8`
`=[(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)]/8`
`=[[(3^2)^2-1^2](3^4+1)(3^8+1)(3^16+1)]/8`
`=[(3^4-1)(3^4+1)(3^8+1)(3^16+1)]/8`
`=[[(3^4)^2-1^2](3^8+1)(3^16+1)]/8`
`=[(3^8-1)(3^8+1)(3^16+1)]/8`
`=[[(3^8)^2-1^2](3^16+1)]/8`
`=[(3^16-1)(3^16+1)]/8`
`=[(3^16)^2-1^2]/8`
`=(3^32-1)/8`