ĐKXĐ : $a \geq 0 ; a \neq 1$
$A=\left (\dfrac{\sqrt{a}+2}{a\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{a+\sqrt{a}+1} \right )-\dfrac{1}{\sqrt{a}-1}$
$A=\left [\dfrac{\sqrt{a}+2-(\sqrt{a}+1)(\sqrt{a}-1)}{(\sqrt{a}-1)(a+\sqrt{a}+1)} \right ] - \dfrac{a+\sqrt{a}+1}{(\sqrt{a}-1)(a+\sqrt{a}+1)}$
$A=\dfrac{\sqrt{a}+2-a+1-a-\sqrt{a}-1}{(\sqrt{a}-1)(a+\sqrt{a}+1)}$
$A=\dfrac{-2a+2}{(\sqrt{a}-1)(a+\sqrt{a}+1)}$
$A=\dfrac{-2(a-1)}{(\sqrt{a}-1)(a+\sqrt{a}+1)}$
$A=\dfrac{-2(\sqrt{a}-1)(\sqrt{a}+1)}{(\sqrt{a}-1)(a+\sqrt{a}+1)}$
$A=\dfrac{-2(\sqrt{a}+1}{a+\sqrt{a}+1}$
Vậy $A=\dfrac{-2(\sqrt{a}+1}{a+\sqrt{a}+1}$