$\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\\=\dfrac{(\sqrt{x}-1)(x+\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}-\dfrac{(\sqrt{x}+1)(x-\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\dfrac{x+1}{\sqrt{x}}\\=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\\=\dfrac{x+\sqrt{x}+1-(x-\sqrt{x}+1)+x+1}{\sqrt{x}}\\=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\\=\dfrac{2\sqrt{x}+x+1}{\sqrt{x}}$