Đáp án:
\({\frac{{ - \sqrt x \left( {\sqrt x {\rm{ \;}} - 2} \right)\left( {1 - \sqrt x } \right)}}{{\left( {3 + \sqrt x } \right)\left( {5 - \sqrt x } \right)}}}\)
Giải thích các bước giải:
\(\begin{array}{*{20}{l}}
{DK:x > 0;x \ne 9}\\
{\left[ {\frac{{\sqrt x \left( {3 - \sqrt x } \right) - 2}}{{\left( {3 - \sqrt x } \right)\left( {3 + \sqrt x } \right)}}} \right]:\left[ {\frac{{\sqrt x - 1 - 2\left( {\sqrt x - 3} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)}}} \right]}\\
{ = \left[ {\frac{{ - x + 3\sqrt x {\rm{ \;}} - 2}}{{\left( {3 - \sqrt x } \right)\left( {3 + \sqrt x } \right)}}} \right].\left[ {\frac{{\sqrt x \left( {\sqrt x - 3} \right)}}{{\sqrt x - 1 - 2\sqrt x + 6}}} \right]}\\
{ = \frac{{\left( {\sqrt x {\rm{ \;}} - 2} \right)\left( {1 - \sqrt x } \right)}}{{\left( {3 - \sqrt x } \right)\left( {3 + \sqrt x } \right)}}.\frac{{ - \sqrt x \left( {3 - \sqrt x } \right)}}{{5 - \sqrt x }}}\\
{ = \frac{{ - \sqrt x \left( {\sqrt x {\rm{ \;}} - 2} \right)\left( {1 - \sqrt x } \right)}}{{\left( {3 + \sqrt x } \right)\left( {5 - \sqrt x } \right)}}}
\end{array}\)