$\begin{array}{l}
39)\sqrt {3 - \sqrt 5 } \left( {\sqrt {10} - \sqrt 2 } \right)\left( {3 + \sqrt 5 } \right)\\
= \sqrt {3 - \sqrt 5 } .\sqrt 2 \left( {\sqrt 5 - 1} \right)\left( {3 + \sqrt 5 } \right)\\
= \sqrt {6 - 2\sqrt 5 } \left( {\sqrt 5 - 1} \right)\left( {3 + \sqrt 5 } \right)\\
= \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} \left( {\sqrt 5 - 1} \right)\left( {3 + \sqrt 5 } \right)\\
= {\left( {\sqrt 5 - 1} \right)^2}\left( {3 + \sqrt 5 } \right)\\
= \left( {6 - 2\sqrt 5 } \right)\left( {3 + \sqrt 5 } \right)\\
= 18 + 6\sqrt 5 - 6\sqrt 5 - 10 = 8\\
40)A = \sqrt {12 - 3\sqrt 7 } - \sqrt {12 + 3\sqrt 7 } \\
\to {A^2} = 12 - 3\sqrt 7 + 12 + 3\sqrt 7 - 2\sqrt {\left( {12 - 3\sqrt 7 } \right)\left( {12 + 3\sqrt 7 } \right)} \\
{A^2} = 24 - 2\sqrt {81} = 24 - 2.9 = 6\\
\Rightarrow A = - \sqrt 6 \\
41)B = \sqrt {4 + \sqrt {10 + 2\sqrt 5 } } + \sqrt {4 - \sqrt {10 + 2\sqrt 5 } } \left( {B > 0} \right)\\
\to {B^2} = 4 + \sqrt {10 + 2\sqrt 5 } + 4 - \sqrt {10 + 2\sqrt 5 } + 2\sqrt {\left( {4 + \sqrt {10 + 2\sqrt 5 } } \right)\left( {4 - \sqrt {10 + 2\sqrt 5 } } \right)} \\
\Rightarrow {B^2} = 8 + 2\sqrt {16 - 10 - 2\sqrt 5 } \\
\Rightarrow {B^2} = 8 + 2\sqrt {6 - 2\sqrt 5 } = 8 + 2\sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} = 8 + 2\left( {\sqrt 5 - 1} \right)\\
= 6 + 2\sqrt 5 = {\left( {\sqrt 5 + 1} \right)^2}\\
\Rightarrow B = \sqrt 5 + 1
\end{array}$