`S = 1+2+ 2^2 + 2^3+ 2^4 + 2^5 + 2^6 +...+ 2^99 `
`2.S= 2+ 2^2 + 2^3+ 2^4 + 2^5 + 2^6 +...+ 2^100`
`2S-S= (2+ 2^2 + 2^3+ 2^4 + 2^5 + 2^6 +...+ 2^100)- (1+2+ 2^2 + 2^3+ 2^4 + 2^5 + 2^6 +...+ 2^99)`
`S= 2^100 - 1`
`S = 2^98 . 2^2 -1`
Vì `2^2=4 < 5 ⇒ 2^98 . 2^2 -1 < 2^98 . 5` hay `A<5 . 2^98`
Vậy `A<5. 2^98`