Đáp án:
Giải thích các bước giải:
$S=\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}$
$ $
Ta có: $\dfrac{1}{5}>\dfrac{1}{10}$ ; $\dfrac{1}{6}>\dfrac{1}{10}$ ;...; $\dfrac{1}{10}=\dfrac{1}{10}$
$ $
$⇒\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}$
$ $
$⇒\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{6}{10}$
$ $
$⇒\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{3}{5}$