Số các giá trị nguyên của tham số \(m\) trong đoạn \(\left[ 0;200 \right]\) để hàm số \(y=m{{x}^{3}}+m{{x}^{2}}+\left( m-1 \right)x-3\) đồng biến trên \(\mathbb{R}\) là A.99. B.201. C. 101. D. 199.
Đáp án đúng: D Giải chi tiết:TH1. Với \(m=0,\) ta có \(y=-\,x-3\) là hàm số nghịch biến trên \(\mathbb{R}.\) TH2. Với \(m\ne 0,\) ta có \({y}'=3m{{x}^{2}}+2mx+m-1;\,\,\forall x\in \mathbb{R}.\) Để hàm số đã cho nghịch biến trên R\(\Leftrightarrow {y}'\ge 0;\,\,\forall x\in R\Leftrightarrow 3m{{x}^{2}}+2mx+m-1\ge 0;\,\,\forall x\in R\) \( \Leftrightarrow \,\,\left\{ \begin{array}{l}a > 0\\\Delta ' \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3m > 0\\{m^2} - 3m\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\3m - 2{m^2} \le 0\end{array} \right. \Leftrightarrow m \ge \frac{3}{2}.\) Kết hợp với \(\left\{ \begin{align} m\in \left[ 0;200 \right] \\ m\in \mathbb{Z} \\ \end{align} \right.\,\,\xrightarrow{{}}\,\,m=\left\{ 2;\,\,3;\,\,...;\,\,200 \right\}.\) Vậy có tất cả 199 giá trị cần tìm. Chọn D.