Đáp án đúng: C Giải chi tiết:Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{{x^2} - x + 1}}{{{x^2} - x - 2}} = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{1 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}}}}{{1 - \dfrac{1}{x} - \dfrac{2}{{{x^2}}}}} = 1 \Rightarrow y = 1\) là TCN của đồ thị hàm số. \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 2} y = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x + 1}}{{{x^2} - x - 2}} = \infty \\\mathop {\lim }\limits_{x \to - 1} y = \mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} - x + 1}}{{{x^2} - x - 2}} = \infty \end{array} \right. \Rightarrow x = 2,\,\,x = - 1\) là các đường TCĐ của đồ thị hàm số. Vậy đồ thị hàm số đã cho có 3 đường tiệm cận. Chọn C.