Phương pháp giải: Giải phương trình tìm nghiệm, kẹp nghiệm trong nửa khoảng đã cho tìm số nghiệm thỏa mãn. Giải chi tiết:Ta có: \(\cos 2x = \dfrac{1}{2} \Leftrightarrow \cos 2x = cos\dfrac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}2x = \dfrac{\pi }{3} + k2\pi \\2x = - \dfrac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow x = \pm \dfrac{\pi }{6} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right).\) Trên nửa khoảng \(\left( {{0^0};{{360}^0}} \right]\)tức \(\left( {0;2\pi } \right]\). Ta sẽ có các nghiệm thỏa mãn như sau: \( + )\,\,\,0 < x = \dfrac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow - \dfrac{1}{6} < k \le \dfrac{{11}}{6}\) mà \(k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1} \right\}\). Có 2 nghiệm. \( + )\,\,\,0 < x = - \dfrac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow \dfrac{1}{6} < k \le \dfrac{{13}}{6}\) mà \(k \in \mathbb{Z} \Rightarrow k \in \left\{ {1;2} \right\}\). Có 2 nghiệm. Vậy có 4 nghiệm thỏa mãn yêu cầu bài toán. Chọn D.