$\text{$125^{5}$ và $2^{15}$ × $3^{15}$ }$
$\text{Ta có:}$
$\text{$125^{5}$ = $(5^3)^{5}$ = $5^{15}$}$
$\text{$2^{15}$ × $3^{15}$ = $6^{15}$}$
$\text{Vì 6 > 5 ⇒ $6^{15}$ > $5^{15}$}$
$\text{hay $125^{5}$ < $2^{15}$ × $3^{15}$}$
$\text{Vậy $125^{5}$ < $2^{15}$ × $3^{15}$}$