$\text{$2^{200}$ . $2^{100}$ và $3^{100}$ . $3^{100}$}$
$\text{hay $2^{300}$ và $3^{200}$ }$
$\text{Ta có: $2^{300}$ = $(2^{3})^{100}$ = $8^{100}$}$
$\text{$3^{200}$ = $(3^{2})^{100}$ = $9^{100}$}$
$\text{Vì 8 < 9 nên $8^{100}$ < $9^{100}$}$
$\text{hay $2^{300}$ < $3^{200}$}$
$\text{Vậy $2^{200}$ . $2^{100}$ < $3^{100}$ . $3^{100}$}$
$\text{Gửi tus!}$ -•.•-