Ta có
$8888^{100} = (8.1111)^{100} = (8.11.101)^{100} = 8^{100} . 11^{100} . 101^{100} = 88^{100} . 101^{100}$
$88^{200} = 88^{100.2} = (88^{100})^2 = 88^{100}.88^{100}$.
Ta có $88<101$ nên $88^{100}<101^{100}$. Vậy
$88^{100}.88^{100} < 88^{100} . 101^{100}$
$<-> 88^{200} < 8888^{100}$