Đáp án:
Giải thích các bước giải:
A= $\frac{10}{2^7}$ + $\frac{10}{2^6}$
= $\frac{10}{2^7}$ + $\frac{20}{2^7}$
= $\frac{30}{2^7}$
B = $\frac{11}{2^7}$ + $\frac{9}{2^6}$
= $\frac{11}{2^7}$ + $\frac{18}{2^7}$
= $\frac{29}{2^7}$
Do $\frac{30}{2^7}$ > $\frac{29}{2^7}$
=> A > B
b, Ta có :
A= $\frac{- 7}{2^5}$ +$\frac{- 15}{10^22006}$
= $\frac{- 70}{10^22006}$ + $\frac{- 15}{10^22006}$
= $\frac{- 85}{10^22006}$
B= $ \frac{- 15}{10^22005}$ + $\frac{- 7}{10^22006}$
= $\frac{- 150}{10^22006}$ + $\frac{- 7}{10^22006}$
= $\frac{- 157}{10^22006}$
Do $\frac{- 85}{10^22006}$ > $\frac{- 157}{10^22006}$
= A > B