$\text{a)1+2.$\sqrt[]{2}$ < 1+2.$\sqrt[]{2,25}$ =1+2.1,5=4}$
$\text{b) 2.$\sqrt[]{6}$ -1< 2.$\sqrt[]{6,25}$ -1=2.2,5-1=5-1=4}$
$\text{c) 3<4 nên $\sqrt[]{3}$ < $\sqrt[]{4}$ =2⇔$\sqrt[]{3}$ -2<0}$
$\text{ $\sqrt[]{0,5}$ >0}$
$\text{Nên $\sqrt[]{0,5}$>$\sqrt[]{3}$ -2}$
$\text{d) 3.$\sqrt[]{3}$ < 2.$\sqrt[]{7}$}$
$\text{⇔(3.$\sqrt[]{3}$)²<( 2.$\sqrt[]{7}$ )²}$
$\text{⇔3².3<2.7²}$
$\text{⇔27<98 (luôn đúng)}$
$\text{Nên 3.$\sqrt[]{3}$ < 2.$\sqrt[]{7}$ }$
$\text{⇔-3.$\sqrt[]{3}$ > -2.$\sqrt[]{7}$ }$