Kẻ MK ⊥ BH (K ∈ BH)
Ta có: ΔABC cân tại A ⇒ ∠ABC = ∠C (1)
Vì: MK ⊥ BH; BH ⊥ AC
⇒ MK // AC ⇒ ∠BMK = ∠C (2 góc đồng vị) (2)
Từ (1) và (2) ⇒ ∠ABC = ∠BMK
Xét ΔBMD và ΔMBK có:
∠BDM = ∠MKB = $90^{o}$
BM: cạnh chung
∠MBD = ∠BMK (cmt)
⇒ ΔBMD = ΔMBK (cạnh huyền-góc nhọn)
⇒ MD = BK (2 cạnh tương ứng)
Ta có: ME ⊥ AC; BH ⊥ AC
⇒ ME // BH ⇒ ∠MHK = ∠HME (2 góc so le trong)
Xét ΔHKM và ΔMEH có:
∠HKM = ∠MEH = $90^{o}$
HM: cạnh chung
∠MHK = ∠HME (cmt)
⇒ ΔHKM = ΔMEH (cạnh huyền-góc nhọn)
⇒ HK = ME (2 cạnh tương ứng)
Mà BK + KH = BH
⇒ MD + ME = BH (đpcm)